SPI Device DV Plan

Goals

  • DV
    • Verify all SPI Device IP features by running dynamic simulations with a SV/UVM based testbench
    • Develop and run all tests based on the testplan below towards closing code and functional coverage on the IP and all of its sub-modules
  • FPV
    • Verify TileLink device protocol compliance with an SVA based testbench

Current status

Design features

For detailed information on SPI Device design features, please see the SPI_device design specification.

Testbench architecture

SPI Device testbench has been constructed based on the CIP testbench architecture.

Block diagram

Block diagram

Top level testbench

Top level testbench is located at hw/ip/spi_device/dv/tb/tb.sv. It instantiates the SPI Device DUT module hw/ip/spi_device/rtl/spi_device.sv. In addition, it instantiates the following interfaces, connects them to the DUT and sets their handle into uvm_config_db:

Common DV utility components

The following utilities provide generic helper tasks and functions to perform activities that are common across the project:

Global types & methods

All common types and methods defined at the package level can be found in spi_device_env_pkg. Some of them in use are:

parameter uint SPI_DEVICE_ADDR_MAP_SIZE = 4096;
parameter uint SRAM_OFFSET              = 'h800;
parameter uint SRAM_SIZE                = 2048;

TL_agent

SPI Device instantiates (already handled in CIP base env) tl_agent which provides the ability to drive and independently monitor random traffic via TL host interface into SPI Device.

SPI Device agent

spi agent is used to drive and monitor SPI items. Following special behavior is supported in spi_host_driver

  • Toggle clock when SPI is in idle state (csb=1)
  • During data transfer, there may be very long delay between each bit or byte of data

UVM RAL Model

The SPI Device RAL model is created with the hw/dv/tools/gen_ral_pkg.py wrapper script at the start of the simulation automatically and is placed in the build area, along with a corresponding fusesoc core file. The wrapper script invokes the regtool.py script from within to generate the RAL model.

It can be created manually by running make ral command from the dv area.

Stimulus strategy

Test sequences

All test sequences reside in hw/ip/spi_device/dv/env/seq_lib. The spi_device_base_vseq virtual sequence is extended from cip_base_vseq and serves as a starting point. All test sequences are extended from spi_device_base_vseq. It provides commonly used handles, variables, functions and tasks that the test sequences can simple use / call. Some of the most commonly used tasks / functions are as follows:

  • spi_device_init: Fully randomize SPI Device control following CSRs and configure TX/RX SRAM FIFO size as following
    • clock polarity/phase(CPOL, CPHA), bit direction(tx/rx_order), mode, fifo interrupt level(txlvl, rxlvl)
    • TX/RX SRAM FIFO size: from 100 to 1900 and higher distribute for TX size / RX size = 1, 12 or 21
  • spi_host_xfer_bytes: Send bytes of data to DUT (SPI Device) through spi_host_driver
  • write_device_words_to_send: Write words of data to DUT CSR and update SRAM write pointer, which enables DUT to send data to SPI host.
  • read_tx/rx_avail_bytes: Read CSRs to get how many bytes of available space/data in SRAM memory

Functional coverage

To ensure high quality constrained random stimulus, it is necessary to develop a functional coverage model. The following covergroups have been developed to prove that the test intent has been adequately met:

  • common covergroup for interrupts hw/dv/sv/cip_lib/cip_base_env_cov.sv: Cover interrupt value, interrupt enable, intr_test, interrupt pin
  • TODO, add more

Self-checking strategy

Scoreboard

The spi_device_scoreboard is primarily used for end to end checking. It creates the following analysis fifos to retrieve the data monitored by corresponding interface agents:

  • tl_a_chan_fifo, tl_d_chan_fifo: These 2 fifos provide transaction items at the end of address channel and data channel respectively
  • host_spi_data_fifo, device_spi_data_fifo: These 2 fifos provides TX/RX words of data from spi_monitor

Assertions

  • TLUL assertions: The tb/spi_device_bind.sv binds the tlul_assert assertions to the IP to ensure TileLink interface protocol compliance.
  • Unknown checks on DUT outputs: The RTL has assertions to ensure all outputs are initialized to known values after coming out of reset.

Building and running tests

We are using our in-house developed regression tool for building and running our tests and regressions. Please take a look at the link for detailed information on the usage, capabilities, features and known issues. Here’s how to run a basic sanity test:

$ cd hw/ip/spi_device/dv
$ make TEST_NAME=spi_device_sanity

Testplan

Milestone Name Description Tests
V1 sanity

Use default SRAM fifo setting. Seq:

  • Write a word data to TX memory and update wptr
  • Send a word SPI transfer
  • Read a word data from RX memory and update rptr
  • Compare the data and check no pending data in SRAM FIFO
  • Repeat above steps
spi_device_sanity
V1 csr_hw_reset

Verify the reset values as indicated in the RAL specification.

  • Write all CSRs with a random value.
  • Apply reset to the DUT as well as the RAL model.
  • Read each CSR and compare it against the reset value. it is mandatory to replicate this test for each reset that affects all or a subset of the CSRs.
  • It is mandatory to run this test for all available interfaces the CSRs are accessible from.
  • Shuffle the list of CSRs first to remove the effect of ordering.
spi_device_csr_hw_reset
V1 csr_rw

Verify accessibility of CSRs as indicated in the RAL specification.

  • Loop through each CSR to write it with a random value.
  • Read the CSR back and check for correctness while adhering to its access policies.
  • It is mandatory to run this test for all available interfaces the CSRs are accessible from.
  • Shuffle the list of CSRs first to remove the effect of ordering.
spi_device_csr_rw
V1 csr_bit_bash

Verify no aliasing within individual bits of a CSR.

  • Walk a 1 through each CSR by flipping 1 bit at a time.
  • Read the CSR back and check for correctness while adhering to its access policies.
  • This verify that writing a specific bit within the CSR did not affect any of the other bits.
  • It is mandatory to run this test for all available interfaces the CSRs are accessible from.
  • Shuffle the list of CSRs first to remove the effect of ordering.
spi_device_csr_bit_bash
V1 csr_aliasing

Verify no aliasing within the CSR address space.

  • Loop through each CSR to write it with a random value
  • Shuffle and read ALL CSRs back.
  • All CSRs except for the one that was written in this iteration should read back the previous value.
  • The CSR that was written in this iteration is checked for correctness while adhering to its access policies.
  • It is mandatory to run this test for all available interfaces the CSRs are accessible from.
  • Shuffle the list of CSRs first to remove the effect of ordering.
spi_device_csr_aliasing
V1 mem_walk

Verify accessibility of all memories in the design.

  • Run the standard UVM mem walk sequence on all memories in the RAL model.
  • It is mandatory to run this test from all available interfaces the memories are accessible from.
spi_device_mem_walk
V1 mem_partial_access

Verify partial-accessibility of all memories in the design.

  • Do partial reads and writes into the memories and verify the outcome for correctness.
spi_device_mem_walk
V2 base_random_seq

Create 3 parallel threads

  • Write random data to TX memory unless fifo is full
  • Send SPI transfer unless TX is empty or RX is full
  • Read RX memory unless RX is empty
spi_device_txrx
V2 fifo_full

Increase the chance to have fifo full by following

  • Reduce delay to write TX memory
  • Increase delay to read RX memory
spi_device_fifo_full
V2 fifo_underflow_overflow

Override spi_device_txrx_vseq to send SPI transfer without checking TX/RX fifo, note:

  • When TX is underflow, SW shouldn't update wptr if spi isn't idle, otherwise, spi may send mis-aligned data
  • When RX is overflow, data will be lost and if SW update rptr, received data may be mis-aligned
  • Ensure underflow/overflow is triggered correctly
spi_device_fifo_underflow_overflow
V2 dummy_sck_and_dummy_csb

Drive dummy sck without csb or drive dummy csb without sck, and test no impact on the design

spi_device_dummy_item_extra_dly
V2 extra_delay_on_spi

Add extra delay between spi clock edge or extra delay between 2 words data This is to test host pause transfer for a while without turning off csb and then stream in data again

spi_device_dummy_item_extra_dly
V2 async_fifo_reset

Reset async fifo when SPI interface is idle TODO: fifo may be fetching data from SRAM? What is the actual usage?

spi_device_async_fifo_reset
V2 interrupts

Test all supported interrupts:

  • tx/rx lvl
  • rx full
  • rx error
  • overflow/underflow
spi_device_interrupts
V2 abort

TODO: Need to clarify the behavior in spec

spi_device_abort
V2 byte_transfer_on_spi

send spi transfer on byte granularity, and make sure the timer never expires

spi_device_byte_transfer
V2 rx_timeout
  • Send spi transfer on byte granularity, and timer may expires
  • Only check data in sequence level when timer expires. Monitor and scoreboard don't model the timer feature
  • Note: Timeout only for RX
spi_device_rx_timeout
V2 bit_transfer_on_spi

Send spi transfer on bit granularity

  • If TX drives < 7 bits, this byte will be sent in next CSB.
  • If TX drives 7 bits and set CSB to high, this byte won't be sent in next CSB
spi_device_bit_transfer
V2 extreme_fifo_setting

Set fifo size to 4 bytes(minimum), 2k-4bytes(maximum) and others

spi_device_extreme_fifo_size
V2 mode

TODO :only support fw mode now

spi_device_mode
V2 mem_ecc

Backdoor hack memory data to test basic memory ECC behavior limitation:

  • Just cover basic functionality and connectivity
  • Complete verification will be done by PFV
spi_device_mem_ecc
V2 perf

Run spi_device_fifi_full_vseq with very small delays

spi_device_perf
V2 intr_test

Verify common intr_test CSRs that allows SW to mock-inject interrupts.

  • Enable a random set of interrupts by writing random value(s) to intr_enable CSR(s).
  • Randomly "turn on" interrupts by writing random value(s) to intr_test CSR(s).
  • Read all intr_state CSR(s) back to verify that it reflects the same value as what was written to the corresponding intr_test CSR.
  • Check the cfg.intr_vif pins to verify that only the interrupts that were enabled and turned on are set.
  • Clear a random set of interrupts by writing a randomly value to intr_state CSR(s).
  • Repeat the above steps a bunch of times.
spi_device_intr_test
V2 oob_addr_access

Access out of bounds address and verify correctness of response / behavior

spi_device_tl_errors
V2 illegal_access

Drive unsupported requests via TL interface and verify correctness of response / behavior

spi_device_tl_errors
V2 outstanding_access

Drive back-to-back requests without waiting for response to ensure there is one transaction outstanding within the TL device. Also, verify one outstanding when back- to-back accesses are made to the same address.

spi_device_csr_hw_reset
spi_device_csr_rw
spi_device_csr_aliasing
spi_device_same_csr_outstanding
V2 partial_access

Do partial accesses.

spi_device_csr_hw_reset
spi_device_csr_rw
spi_device_csr_aliasing